
CSC4005 Project 1 Report  
How to compile the programs  

 

How to execute the programs  

 

How does each parallel programming model do computation in 
parallel

 

SIMD (Single Instruction, Multiple Data):

It performs a single operation on multiple data points simultaneously.

MPI (Message Passing Interface):

It uses a message-passing paradigm where individual processes communicate with each other by 
explicitly sending and receiving messages. 

Pthread (POSIX threads):

It allows multiple threads to run concurrently within a single process. Shared memory is used for 
communication, and synchronization primitives like mutexes are often required.

OpenMP (Open Multi-Processing):

Uses compiler directives to automatically parallelize code. It allows shared-memory parallelism, where 
threads can be forked to perform tasks concurrently.

CUDA (Compute Unified Device Architecture):

NVIDIA's parallel computing platform and API. CUDA allows developers to utilize NVIDIA GPUs for 
parallel processing. It uses a hierarchy of thread blocks and grids.

cd /path/to/project1

mkdir build && cd build

cmake ..

make -j4

cd /path/to/project1/build

sbatch ./../src/scripts/sbatch_PartA.sh

sbatch ./../src/scripts/sbatch_PartB.sh

af://n0
af://n2
af://n253
af://n254


OpenACC (Open Accelerators): 

A directive-based programming model designed to simplify the parallelizing of code on 
heterogeneous systems (like systems that combine CPUs and GPUs). 

 

What are the similarities and differences between each parallel 
programming model

 

Similarities:  

Performance Objective: All aim to enhance computational performance by executing tasks in 
parallel.

Concurrency: Each model introduces mechanisms to allow multiple tasks to run at the same time.

 

Differences:  

SIMD: Single instruction operates on multiple data points simultaneously. Emphasizes DLP (Data-
Level Parallelism), as it performs the same operation on multiple data simultaneously.

MPI: Message-passing paradigm in distributed systems. Focuses on TLP (Thread-Level Parallelism) 
across distinct processes.

Pthread: Multi-threading within a single process.  Exploits TLP within a shared memory context.

OpenMP: Compiler directives for shared-memory parallelism. Primarily leverages TLP but can also tap 
into DLP when vectorizing loops.

CUDA: GPU parallelism with a specific hierarchy (thread, block, grid). Exploits both DLP and TLP. 
Massive DLP due to the simultaneous execution of the same instruction over different data elements 
in a GPU and TLP because of the concurrently executing threads.

OpenACC: Directive-based for heterogeneous systems. Harnesses both DLP and TLP depending on 
how directives are used and the target accelerator.

 

What kinds of optimizations have you tried to speed up your 
parallel program for PartB, and how does them work?

 

SIMD:  

I padded the original image to aid in applying the filter. In this case the image to filter maintains a 
width that is a multiple of 8. Then the SIMD operations are perfectly aligned with the image's data 
layout. This guarantees that there's no "spill" over the boundary when loading 8 adjacent values, 
ensuring that the SIMD operations are always fully utilized without any need for additional boundary 
checks or special handling for the image's edge pixels.
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Instead of accessing the interleaved RGB values directly, I separated them into three color channels. 
This ensures better memory access patterns. In this case, I can load 8 continuous red/blue/green 
pixels, which is significantly efficient for SIMD. In addition, by processing 8 adjacent values at once, the 
code makes efficient use of spatial locality in memory.

I used AVX2, which can operate on 256-bit wide data, allowing operations on multiple data points 
simultaneously. For every iteration, 8 continuous values (red/green/blue) are processed, providing a 
speed-up. In total there are 9 iterations, corresponding to the convolution process. After the last 
iteration, the value of 8 continuous pixels of the filtered image are computed simultaneously.

MPI:

I've partitioned the convolution operation among different MPI processes, with each process 
responsible for processing a specific chunk of rows. By segmenting the image into sections and 
distributing them across multiple processes, I achieve parallelism at a high level, accelerating the 
overall execution.

I've ensured the rows of the image are divided in a balanced manner among the processes. If there 
are 11 pixels and 3 tasks, the division is 4, 4, and 3, making sure each process gets roughly an equal 
workload. This balanced division ensures that no particular process becomes a bottleneck. 
Guaranteeing that every process is equipped with a roughly equal workload negates situations where 
certain processes wrap up early and remain idle, leading to inefficiencies.

I replace the original one for loop by two for loops, which can reduce the calculation because in this 
case not every pixel need to recalculate the position in the image. For each row, we can calculate the 
row's position, and then the pixel's position can be calculated by adding an offset.

By isolating the red, green, and blue channels into their arrays, I've optimized memory access when 
applying the filter, which enhances cache performance.

I have removed the inner two nested for loops. I rewrote it in a non-loop format. Every loop carries 
some overhead – initializing loop counters, branching for loop conditions, and incrementing loop 
counters. By eliminating the nested loops, I've removed this overhead, making the code potentially 
faster. In addition, I used arrays to store the positions of the pixels being processed, reducing the 
number of repetitive calculations needed. By calculating the index only once and reusing them, I've 
reduced the number of arithmetic operations, improving speed.

Pthread :

I've utilized the Pthreads library, which allows for the creation of multiple threads to operate on the 
image concurrently. This means that multiple portions of the image can be processed simultaneously, 
taking full advantage of multi-core processors.

The image data is divided into chunks based on the number of threads. Each thread processes its own 
chunk of the image. By breaking the task into smaller chunks, I ensure that each thread has an equal 
amount of work, leading to a balanced load across all threads.

By isolating the red, green, and blue channels into their arrays, I've optimized memory access when 
applying the filter, which enhances cache performance.



I have removed the inner two nested for loops. I rewrote it in a non-loop format. Every loop carries 
some overhead – initializing loop counters, branching for loop conditions, and incrementing loop 
counters. By eliminating the nested loops, I've removed this overhead, making the code potentially 
faster. In addition, I used arrays to store the positions of the pixels being processed, reducing the 
number of repetitive calculations needed. By calculating the index only once and reusing them, I've 
reduced the number of arithmetic operations, improving speed.

OpenMP :

I leveraged the OpenMP library to enable parallel processing. OpenMP provides a simple and flexible 
way to harness the power of multi-core processors. By incorporating #pragma  directives, I can easily 

dictate which sections of the code should run in parallel.

OpenMP allows for easy data partitioning. I divided the image into chunks based on the number of 
threads specified. Each thread then works on its designated chunk of the image. This ensures that 
each thread has a similar workload and all threads can run concurrently.

I used the #pragma omp for  directive to automatically divide the for-loop iterations among the 

threads. This ensures a balanced distribution of work, where each thread processes roughly an equal 
number of pixels.

By isolating the red, green, and blue channels into their arrays, I've optimized memory access when 
applying the filter, which enhances cache performance.

I have removed the inner two nested for loops. I rewrote it in a non-loop format. Every loop carries 
some overhead – initializing loop counters, branching for loop conditions, and incrementing loop 
counters. By eliminating the nested loops, I've removed this overhead, making the code potentially 
faster. In addition, I used arrays to store the positions of the pixels being processed, reducing the 
number of repetitive calculations needed. By calculating the index only once and reusing them, I've 
reduced the number of arithmetic operations, improving speed.

CUDA:

I use NVIDIA's CUDA platform, which enables general-purpose parallel programming on GPUs. The 
ability of GPUs to handle thousands of threads concurrently makes them highly efficient for tasks like 
image processing where operations on pixels can be parallelized.

The kernel processes the image pixel by pixel, making use of the GPU's ability to execute many 
threads in parallel. By computing pixel values in parallel, I could achieve a significant speedup 
compared to sequential execution.

I have removed the inner two nested for loops. I rewrote it in a non-loop format. Every loop carries 
some overhead – initializing loop counters, branching for loop conditions, and incrementing loop 
counters. By eliminating the nested loops, I've removed this overhead, making the code potentially 
faster. In addition, I used arrays to store the positions of the pixels being processed, reducing the 
number of repetitive calculations needed. By calculating the index only once and reusing them, I've 
reduced the number of arithmetic operations, improving speed.

OpenACC : 

With #pragma acc parallel  and #pragma acc loop , I specified that the loops for image processing 
are to be executed in parallel on the GPU. OpenACC will handle the decomposition of the loops and 
distribute the iterations among GPU threads.



Number of
Processes /
Cores

Sequential
SIMD
(AVX2)

MPI Pthread OpenMP CUDA OpenACC

1 653 421 654 724 590 27.1173 28

2 N/A N/A 787 650 591 N/A N/A

4 N/A N/A 493 334 456 N/A N/A

8 N/A N/A 339 207 325 N/A N/A

16 N/A N/A 334 106 191 N/A N/A

32 N/A N/A 276 74 132 N/A N/A

I chose a block size of 1024, allowing each GPU block to have that many threads. The number of gangs 
(blocks) is calculated based on the image size, ensuring optimal workload distribution across the GPU.

I have removed the inner two nested for loops. I rewrote it in a non-loop format. Every loop carries 
some overhead – initializing loop counters, branching for loop conditions, and incrementing loop 
counters. By eliminating the nested loops, I've removed this overhead, making the code potentially 
faster. In addition, I used arrays to store the positions of the pixels being processed, reducing the 
number of repetitive calculations needed. By calculating the index only once and reusing them, I've 
reduced the number of arithmetic operations, improving speed.

 

Performance  

Part A  
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Number of
Processes /
Cores

Sequential
SIMD
(AVX2)

MPI Pthread OpenMP CUDA OpenACC

1 5565 1077 3931 7733 7699 18.2856 19

2 N/A N/A 4039 5720 5714 N/A N/A

4 N/A N/A 2865 3284 2946 N/A N/A

8 N/A N/A 1802 1733 1477 N/A N/A

16 N/A N/A 1213 821 877 N/A N/A

32 N/A N/A 764 569 600 N/A N/A

Part B  
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Observations:  

1. Sequential vs Parallel:

For both Part A and Part B, as expected, the sequential times are significantly higher than 
most parallel implementations when run on multiple processes/cores.

Even for a single process/core, some parallel methods (like SIMD and CUDA) significantly 
outperform the sequential method, likely due to architecture-specific optimizations.

2. SIMD (AVX2):

SIMD shows a significant speed-up compared to the sequential method for both parts, 
which is expected as SIMD allows multiple data points to be processed simultaneously.

3. Pthread & OpenMP:

As the number of processes/cores increases, the performance of Pthread and OpenMP 
improves substantially. This is indicative of effective thread-based parallelization.

Pthread seems to have a sharper drop in time than OpenMP, especially as the number of 
cores increases.

4. MPI:

The MPI times decrease as the number of processes increases, which is expected as the 
work is distributed across more nodes.

However, for two processes, the time seems anomalously high. This might be due to 
communication overhead or inefficiencies in splitting the workload.

5. CUDA & OpenACC:

Both CUDA and OpenACC show significant speed-ups for single-core processing. They utilize 
the parallel processing capabilities of GPUs effectively.

The times for Part B are slightly lower than for Part A, which might indicate that the GPU is 
better optimized for the filter operation compared to RGB-to-grayscale.

 

Differences between Part A and Part B:  

1. Nature of Operations:

RGB-to-grayscale conversion (Part A) is a relatively simpler operation where each RGB pixel 
value is converted to a single grayscale value.

Image filtering (Part B), especially with an equal weight filter, involves multiple pixel values 
contributing to a single output pixel, which inherently requires more computations.

2. Computational Intensity:

The times for Part B are generally higher across all methods, indicating that the soften filter 
operation is more computationally intensive.

3. Optimization Differences:

The smaller difference in times for GPU-based methods (CUDA & OpenACC) between the 
two operations suggests that the GPU is potentially better optimized for filtering operations 
compared to simpler conversions.
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